Modeled Sea Level Rise Impacts on Coastal Ecosystems at Six Major Estuaries on Florida’s Gulf Coast: Implications for Adaptation Planning
نویسندگان
چکیده
The Sea Level Affecting Marshes Model (SLAMM) was applied at six major estuaries along Florida's Gulf Coast (Pensacola Bay, St. Andrews/Choctawhatchee Bays, Apalachicola Bay, Southern Big Bend, Tampa Bay and Charlotte Harbor) to provide quantitative and spatial information on how coastal ecosystems may change with sea level rise (SLR) and to identify how this information can be used to inform adaption planning. High resolution LiDAR-derived elevation data was utilized under three SLR scenarios: 0.7 m, 1 m and 2 m through the year 2100 and uncertainty analyses were conducted on selected input parameters at three sites. Results indicate that the extent, spatial orientation and relative composition of coastal ecosystems at the study areas may substantially change with SLR. Under the 1 m SLR scenario, total predicted impacts for all study areas indicate that coastal forest (-69,308 ha; -18%), undeveloped dry land (-28,444 ha; -2%) and tidal flat (-25,556 ha; -47%) will likely face the greatest loss in cover by the year 2100. The largest potential gains in cover were predicted for saltmarsh (+32,922 ha; +88%), transitional saltmarsh (+23,645 ha; na) and mangrove forest (+12,583 ha; +40%). The Charlotte Harbor and Tampa Bay study areas were predicted to experience the greatest net loss in coastal wetlands The uncertainty analyses revealed low to moderate changes in results when some numerical SLAMM input parameters were varied highlighting the value of collecting long-term sedimentation, accretion and erosion data to improve SLAMM precision. The changes predicted by SLAMM will affect exposure of adjacent human communities to coastal hazards and ecosystem functions potentially resulting in impacts to property values, infrastructure investment and insurance rates. The results and process presented here can be used as a guide for communities vulnerable to SLR to identify and prioritize adaptation strategies that slow and/or accommodate the changes underway.
منابع مشابه
Application of Sea Level Rise Vulnerability Assessment Model to Selected Coastal Areas of Turkey
ÖZYURT, G. and ERGÍN, A., 2009. Application of Sea Level Rise Vulnerability Assessment Model to Selected Coastal Areas of Turkey. Journal of Coastal Research, SI 56 (Proceedings of the 10th International Coastal Symposium), 248 – 251. Lisbon, Portugal, ISSN 0749-0258 Climate change and anticipated impacts of sea level rise such as increased coastal erosion, inundation, flooding due to storm sur...
متن کاملAdapting to Rising Sea Level: A Florida Perspective
Global climate change and concomitant rising sea level will have a profound impact on Florida’s coastal and marine systems. Sea-level rise will increase erosion of beaches, cause saltwater intrusion into water supplies, inundate coastal marshes and other important habitats, and make coastal property more vulnerable to erosion and flooding. Yet most coastal areas are currently managed under the ...
متن کاملSea level history of the northern Gulf of Mexico coast and sea level rise scenarios for the near future
The sea level history of the northern Gulf of Mexico during recent geologic time has closely followed global eustatic sea level change. Regional effects due to tectonics and glacio-isostasy have been minimal. Over the past several million years the northern Gulf coast, like most stable coastal regions of the globe, has experienced major swings of sea level below and above present level, accompa...
متن کاملSecuring ocean benefits for society in the face of climate change
Benefits humans rely on from the ocean – marine ecosystem services – are increasingly vulnerable under future climate. This paper reviews how three valued services have, and will continue to, shift under climate change: (1) capture fisheries, (2) food from aquaculture, and (3) protection from coastal hazards such as storms and sea-level rise. Climate adaptation planning is just beginning for fi...
متن کاملCan the Gulf Stream Induce Coherent Short-Term Fluctuations in Sea level along the US East Coast?: A Modeling Study
Much attention has been given in recent years to observations and models that show that variations in the transport of the Atlantic Meridional Overturning Circulation (AMOC) and in the Gulf Stream (GS) can contribute to interannual, decadal, and multi-decadal variations in coastal sea level (CSL) along the US East Coast. However, less is known about the impact of short-term (time scales of days...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015